Number Systems


Numbers are such simple things…

Unfortunately not !!

Classes of numbers (The “What”)

“Numbers can be classified into sets, called number systems, such as the natural numbers and the real numbers. The major categories of numbers are as follows:”

Integers

https://en.wikipedia.org/wiki/Integer_(computer_science)

“an integer is a datum of integral data type, a data type that represents some range of mathematical integers. Integral data types may be of different sizes and may or may not be allowed to contain negative values. Integers are commonly represented in a computer as a group of binary digits (bits). The size of the grouping varies so the set of integer sizes available varies between different types of computers. Computer hardware nearly always provides a way to represent a processor register or memory address as an integer”

https://en.wikipedia.org/wiki/Numeral_system

“A numeral system (or system of numeration) is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner.

The same sequence of symbols may represent different numbers in different numeral systems. For example, “11” represents the number eleven in the decimal numeral system (used in common life), the number three in the binary numeral system (used in computers), and the number two in the unary numeral system (e.g. used in tallying scores).

The number the numeral represents is called its value. Not all number systems can represent all numbers that are considered in the modern days; for example, Roman numerals have no zero”

https://en.wikipedia.org/wiki/Number

“A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can be represented by symbols, called numerals; for example, “5” is a numeral that represents the number five. As only a relatively small number of symbols can be memorized, basic numerals are commonly organized in a numeral system, which is an organized way to represent any number. The most common numeral system is the Hindu–Arabic numeral system, which allows for the representation of any number using a combination of ten fundamental numeric symbols, called digits. In addition to their use in counting and measuring, numerals are often used for labels (as with telephone numbers), for ordering (as with serial numbers), and for codes (as with ISBNs). In common usage, a numeral is not clearly distinguished from the number that it represents”

https://en.wikipedia.org/wiki/Binary_number

“In mathematics and digital electronics, a binary number is a number expressed in the base-2 numeral system or binary numeral system, which uses only two symbols: typically “0” (zero) and “1” (one)”

“The base-2 numeral system is a positional notation with a radix of 2. Each digit is referred to as a bit, or binary digit. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used by almost all modern computers and computer-based devices…”

https://en.wikipedia.org/wiki/Binary_code

“A binary code represents text, computer processor instructions, or any other data using a two-symbol system. The two-symbol system used is often “0” and “1” from the binary number system. The binary code assigns a pattern of binary digits, also known as bits, to each character, instruction, etc. For example, a binary string of eight bits can represent any of 256 possible values and can, therefore, represent a wide variety of different items.

In computing and telecommunications, binary codes are used for various methods of encoding data, such as character strings, into bit strings. Those methods may use fixed-width or variable-width strings. In a fixed-width binary code, each letter, digit, or other character is represented by a bit string of the same length; that bit string, interpreted as a binary number, is usually displayed in code tables in octal, decimal or hexadecimal notation. There are many character sets and many character encodings for them

Hexadecimal

https://en.wikipedia.org/wiki/Hexadecimal

“In mathematics and computing, the hexadecimal (also base 16 or hex) numeral system is a positional numeral system that represents numbers using a radix (base) of 16. Unlike the common way of representing numbers using 10 symbols, hexadecimal uses 16 distinct symbols, most often the symbols “0”–”9” to represent values 0 to 9, and “A”–”F” (or alternatively “a”–”f”) to represent values 10 to 15”

“Hexadecimal numerals are widely used by computer system designers and programmers because they provide a human-friendly representation of binary-coded values. Each hexadecimal digit represents four bits (binary digits), also known as a nibble (or nybble), which is half a byte. For example, a single byte can have values ranging from 00000000 to 11111111 in binary form, which can be conveniently represented as 00 to FF in hexadecimal”

A detailed discussion

https://en.wikipedia.org/wiki/Set_(mathematics)

“In mathematics, a set is a collection of distinct elements. The elements that make up a set can be any kind of things: people, letters of the alphabet, numbers, points in space, lines, other geometrical shapes, variables, or even other sets. Two sets are equal if and only if they have precisely the same elements”

https://en.wikipedia.org/wiki/Set_theory

“Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole”


•  Updated: 6th August 2022 by David Husband  •  Created: 22nd July 2022 by David Husband  •
© 2021 David Husband, a.k.a. Baremetal Engineer Extraordinaire
All Rights Reserved – All Trademarks & Copyrights Acknowledged
All personal information is subject to the Data Protection Act 2018 & the UK GDPR
“ad auxilium aliis ad auxilium sibi”